Helicobacter pylori increases proteasome-mediated degradation of p27(kip1) in gastric epithelial cells.

نویسندگان

  • Hidetoshi Eguchi
  • Nicole Herschenhous
  • Noriyoshi Kuzushita
  • Steven F Moss
چکیده

Helicobacter pylori infection is associated with increased gastric epithelial cell turnover and is a risk factor for noncardia gastric cancer. H. pylori reduces the expression of p27 protein, a cyclin-dependent kinase inhibitor of the G(1) to S-phase cell cycle transition and gastric tumor suppressor gene. Although cell cycle dysregulation associated with decreased p27 may contribute to gastric carcinogenesis, how H. pylori reduces p27 in gastric epithelial cells remains unknown. In the present study, we investigated the mechanisms of the p27 decrease, using AGS and MKN28 gastric epithelial cells cocultured with H. pylori strains under conditions of defined cell cycle distribution. The expression of p27 protein was reduced by H. pylori in a dose- and time-dependent manner. Northern blot and pulse-chase analyses revealed that this reduction was not regulated at a transcriptional level but by accelerated p27 degradation via a proteasome-dependent pathway. Despite up-regulation of the proteasome-dependent degradation of p27 protein, neither threonine 187-phosphorylated p27 nor skp2 (the ubiquitin ligase for p27) were increased. Furthermore, H. pylori impaired p27 ubiquitination and did not increase global proteasomal function. These results indicate that H. pylori increases the degradation of p27 through a proteasomal pathway distinct from the physiological pathway that degrades p27 during cell cycle progression. Putative virulence genes of H. pylori (cagA, cagE, or vacA) played no role in reducing p27 expression. Increased degradation of p27 by H. pylori through a proteasome-dependent, ubiquitin-independent pathway may contribute to the increased risk of gastric cancer associated with chronic H. pylori infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STOMACH p27 regulates the apoptotic response of gastric epithelial cells to Helicobacter pylori

Background: Helicobacter pylori infection increases the risk of gastric cancer but the molecular mechanisms responsible are not well understood. Gastric cells chronically exposed to H pylori in vitro develop resistance to apoptosis associated with low levels of p27, a cyclin dependent kinase inhibitor and haplo insufficient tumour suppressor gene that is downregulated in gastric cancer. Aim: To...

متن کامل

Chronic Helicobacter pylori infection induces an apoptosis-resistant phenotype associated with decreased expression of p27(kip1).

Helicobacter pylori infection is associated with the development of gastric cancer. In short-term coculture with AGS gastric cells, H. pylori inhibits cell cycle progression and induces dose-dependent apoptosis. Based on the concept that an imbalance between proliferation and apoptosis may contribute to the emergence of gastric cancer, we chronically exposed AGS cells to H. pylori as a model of...

متن کامل

FoxM1 is overexpressed in Helicobacter pylori-induced gastric carcinogenesis and is negatively regulated by miR-370.

UNLABELLED Helicobacter pylori (H. pylori) infections are strongly implicated in human gastric mucosa-associated diseases. Forkhead box M1 (FoxM1), a key positive regulator of cell proliferation, is overexpressed in gastric cancer. MicroRNAs are important post-transcriptional regulators of gene expression. In this study, the effects of H. pylori infection on FoxM1 expression and possible mechan...

متن کامل

Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells

Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...

متن کامل

Role of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer

Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that has been introduced as a cause of mucosal inflammation and gastric cancer. The most important pathogenic factors are VacA and CagA, which are associated with increased disease severity in clinical strains. Autophagy is a protected lysosomal degradation pathway degrading cytoplasmic content and is important in host...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 15  شماره 

صفحات  -

تاریخ انتشار 2003